Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0301234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728290

RESUMO

Nucleic Acid Lateral Flow Assays (NALFAs) are a promising solution for the point-of-care detection of viruses like SARS-CoV-2. However, they show some drawbacks, such as the great dependency on the use of antibodies and the need for post-amplification protocols that enable the preparation of amplicons for effective readings, as well as low sensitivity. Here, we developed amplicons of a specific SARS-CoV-2 gene tailed with single-strand DNA (ssDNA) sequences to hybridize with DNA probes immobilized on the NALFA strips, thus overcoming the aforementioned problems. Results have shown that tailed primers have not compromised the amplification efficiency and allowed the correct detection of the amplicons in the lateral flow strip. This approach has presented a limit of detection (LOD) of 25 RNA copies /reaction mix (1 copy/µL) and the test of cross-reactivity with other related viruses has not shown any cross-reactivity. Twenty clinical samples were evaluated by NALFA and simultaneously compared with the gold standard RT-qPCR protocol, originating equal results. Although the number of clinical specimens tested being relatively small, this indicates a sensitivity and specificity both of 100%. In short, an alternative NALFA was successfully implemented, rendering an accurate route for SARS-CoV-2 diagnosis, compatible with low-resource settings.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Humanos , COVID-19/diagnóstico , COVID-19/virologia , RNA Viral/genética , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Teste de Ácido Nucleico para COVID-19/métodos , DNA de Cadeia Simples/genética , Primers do DNA/genética , Sondas de DNA
2.
Front Cell Infect Microbiol ; 12: 799678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402302

RESUMO

COVID-19 pandemic ignited the development of countless molecular methods for the diagnosis of SARS-CoV-2 based either on nucleic acid, or protein analysis, with the first establishing as the most used for routine diagnosis. The methods trusted for day to day analysis of nucleic acids rely on amplification, in order to enable specific SARS-CoV-2 RNA detection. This review aims to compile the state-of-the-art in the field of nucleic acid amplification tests (NAATs) used for SARS-CoV-2 detection, either at the clinic level, or at the Point-Of-Care (POC), thus focusing on isothermal and non-isothermal amplification-based diagnostics, while looking carefully at the concerning virology aspects, steps and instruments a test can involve. Following a theme contextualization in introduction, topics about fundamental knowledge on underlying virology aspects, collection and processing of clinical samples pave the way for a detailed assessment of the amplification and detection technologies. In order to address such themes, nucleic acid amplification methods, the different types of molecular reactions used for DNA detection, as well as the instruments requested for executing such routes of analysis are discussed in the subsequent sections. The benchmark of paradigmatic commercial tests further contributes toward discussion, building on technical aspects addressed in the previous sections and other additional information supplied in that part. The last lines are reserved for looking ahead to the future of NAATs and its importance in tackling this pandemic and other identical upcoming challenges.


Assuntos
COVID-19 , Ácidos Nucleicos , COVID-19/diagnóstico , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pandemias , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade
3.
Appl Biochem Biotechnol ; 193(3): 607-618, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32500426

RESUMO

Pseudomonas fluorescens has the ability to produce the siderophore pyoverdine, a biotechnologically significant iron chelator, which has a wide range of potential applications, such as in agriculture (iron fertilizers) and medicine (development of antibiotics). The present work aimed to evaluate the influence of culture medium composition on the production of siderophores by P. fluorescens DSM 50090, an industrial relevant strain. It was found that the bacterium grown in minimal medium succinate (MMS) had a higher siderophore production than in King B medium. The replacement of succinate by glycerol or dextrose, in minimal medium, originated lower siderophore production. The increase of succinate concentration, the addition of amino acids or the reduction of phosphate in the culture medium did not improve siderophore production by P. fluorescens. The results obtained strongly suggest that (i) MMS is more appropriate than King B for large-scale production of siderophores; (ii) the modification of the culture medium composition, particularly the type of carbon source, influences the level of siderophore secreted; (iii) the production of siderophore by P. fluorescens seems to be a tightly regulated process; once a maximum siderophore concentration has been reached in the culture medium, the bacterium seems to be unable to produce more compound.


Assuntos
Meios de Cultura/química , Meios de Cultura/farmacologia , Pseudomonas fluorescens/crescimento & desenvolvimento , Sideróforos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...